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Abstract: Facial components are important for many face image analysis applications. Facial 
component segmentation is a challenging task due to variations in illumination conditions, pose, 
scale, skin color etc. Deep learning is a novel branch of machine learning, very efficient in 
solving complex problems. In this study, we developed a deep Convolutional Neural Network 
(CNN) to automatically segment facial components in face images. The network has been 
trained with face images in Radboud face database. Training labels have been created using 
Face++ SDK. The developed CNN produces a segmentation mask where mouth, eyes, and 
eyebrows components of the face are marked as foreground. We have focused on these 
components because they can include very important information for facial image analysis 
studies such as facial expression recognition. The segmentation success rate of the study is 
98.01 according to average accuracy. 
Keywords: Convolutional Neural Network, Deep Learning, Facial Feature Extraction, Facial 
Image Segmentation 
. 

Introduction 
Face image analysis tasks such as facial expression recognition, face recognition, face verification etc. have many 
practical uses in security (Moniruzzaman & Hossain, 2015), traffic (Maralappanavar et al., 2016), and healthcare 
(Bevilacqua et al., 2011) fields. Facial feature extraction is a fundamental but challenging step in face image 
analysis because of variations in illumination conditions, head pose and scale, skin color, and other factors such 
as occlusions, complex backgrounds, etc. 

 
Two main categories of facial feature study and description are holistic description and local feature-based 
description (Li et al., 2017). Holistic approaches treat and investigate faces as a whole. Principle component 
analysis (PCA) (Chengjun Liu, 2004) linear discriminant analysis (LDA) (Linsen Wang et al., 2015) and 
independent component analysis (ICA) (Kwak & Pedrycz, 2007), are common methods for holistic face 
description. Local feature-based approaches analyze and describe a face in terms of its parts/components rather 
than as a whole. That can be beneficial for some situation, such as occlusion ( Li et al., 2017). 

 
Detection and interpretation of facial components are difficult tasks because of variations in shape, size, 
appearance, and relative positions of the facial components. Recently, numerous facial feature extraction methods 
have been proposed. Fang et al.(Fang et al., 2017) proposed a novel partial differential equation based method for 
facial feature learning. Perakis et al. (Perakis et al., 2014) provided a novel generalized framework of fusion 
methods for landmark  detection. Gong  et al. (Gong et al., 2017) presented a new feature descriptor for 
heterogeneous face recognition. Das et al. Ding et al (Ding et al., 2014) introduced a new color balloon snake 
model for face segmentation in color images. 

 
Deep learning catches the attention in machine learning and computer vision area because of its outstanding 
performance. In deep learning approaches, features are learned automatically and complex connections of the data 
can be resolved (Krizhevsky et al., 2012). Recently deep learning methods have been very popular in face analysis 
studies such as facial age estimation (Liu et al., 2017), facial beauty prediction (Xu et al., 2017), face detection 
(Triantafyllidou & Tefas, 2016), face recognition (Zeng et al., 2015), and facial expression recognition studies 
(Zhang et al., 2017). For instance, Liu et al. (Liu et al., 2017) presented a group-aware deep feature learning 
approach that learns discriminative face representation for facial age estimation, Ding et al.(Ding & Tao, 2015) 
proposed a deep learning framework to jointly learn face representation using multimodal information, Mukherjee 
et al.(Mukherjee & Robertson, 2015) presented a CNN based model for human head pose estimation in low- 
resolution multi-modal RGB-D data, Fan et al. (Fan & Zhou, 2016) presented a CNN structure for facial landmark 
localization. 
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This paper presents a deep learning approach to automatically segment facial components in face images. Viola & 
Jones face detection algorithm (Viola & Jones, 2001), has been used for face detection and cropping in the database 
images. We have developed a deep convolutional neural network (CNN) for segmentation of facial components 
in cropped face images. The network has been trained with face images and corresponding binary facial component 
masksmarking mouth, eyes, and eyebrows regions of the face. Training masks have been created using Face++ 
toolbox (Face++, 2017), postprocessing, and visual inspection. These specific components were selected because 
our ultimate goal is facial expression recognition and mouth, eyes, and eyebrows play and important role in facial 
expression formation (Lin Zhong et al., 2012). 

 
The rest of the article is structured as follows. Section 2 gives details of the system. Section 3 presents the 
experimental results. Finally, Section 4 compiles the results of the study and makes suggestions for future studies. 

 
Proposed System 
The proposed processing pipeline consists of three steps: (1) face cropping, (2) training data generation, and (3) 
development, training, and testing of a convolutional neural network (CNN) architecture. Block diagram of the 
proposed pipeline is shown in Figure 1. Training and testing images are first cropped by Viola&Jones face 
detection algorithm (Viola & Jones, 2001). Cropped images are then used for training data generation and facial 
component segmentation as follows. 

 

 
Figure 1.Proposed System 

 
a) Training Data Generation 
We have created training masks for facial component segmentation using Face++ SDK (Face++, 2017). The 
Face++ SDK detects 83 keypoints on human face. With the help of these keypoints, we have created close shapes 
on human eyes, eyebrows and mouths by polygon fitting to the detected landmark points. Finally, the input images 
have been iconized. These steps can be seen in Figure 2. 

 
Figure 2. Training data generation steps 
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b) The Proposed CNN Architecture 
We  have  developed  a  CNN  structure  to  segment  mouth,  eyes  and  eyebrows  component  in  face  images. 
Segmentation is done by classifying 16x16 blocks on the image as background versus facial component. The 
proposed CNN architecture consists of one batch normalization layer, four convolutional layers (two layers with 
16 5x5 filters, one layer with 32 5x5 filters and one layer with 32 4x4 filters), two pooling layers, and one fully 
connected layer. Training is done with 16x16 non-overlapping blocks extracted from the training image. It has 
been obtained 345600 blocks totally. Blocks are assigned a training data label based on the percentage of pixels 
from facial components and background classes. Blocks  having 80% or more of their pixels from facial 
components or background classes, are kept for training, remaining 3018 mixed class blocks are removed from 
training. 7132 facial components blocks and 335450 background class are obtained. 

 
Testing is done by feeding the whole image to efficiently simulate sliding window processing using the sliding 
window processing method described in (Shelhamer et al., 2016). Figure 3 illustrates the proposed CNN 
architecture. Table 1 shows kernel size, number of filters, and input and output size for each convolution layer. 

 

 
Figure 3.Proposed CNN architecture 

 
Table 1: Detailed layer information for the proposed CNN 

 
Layer Kernel Filter Input Output 
Conv1 5x5 16 576x512x3 576x512x16 
Conv2 5x5 16 288x256x16 288x256x16 
Conv3 5x5 32 288x256x16 288x256x32 
Conv4 4x4 32 144x128x32 141x125x32 

 

Experiments 
Radboud Face Database (Langner et al., 2010) has been used for training and testing of the proposed network. The 
images have been resized to 512x576 pixels in order to avoid partial blocks. 335 images have been used for the 
study (300 for training and 35 for testing). 

 
We evaluated our segmentation result in terms of accuracy as shown in Table 2, where TP, TN, FP, and FN refer 
to true positives, true negatives, false positives, and false negatives, respectively. As can be seen in the Table 2; 
our average accuracy is 98.01%. Sample test results can be seen in Table 3. 

 
 

Table 2: Success rate of our study 
 

Index Equation Success Rate (%) 
 

Accuracy (Acc) 
TP  TN 

TP  TN  FP  FN 

 
98.0133 
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Table 3: Sample facial component segmentation results. 
 

Expressions Angry Happy Neutral Sad Surprised 
 
 
Original 
face 
images 

     
 
 
 
Training Data 

     
 
Segmentation 
results 
produced by 
the proposed 
system 

     
 
 
 

Conclusion 
In this study, we presented a deep convolutional neural network approach for facial component segmentation. We 
focused on eyes, eyebrows and mouth components because these components play an important role in facial 
analysis studies, such as facial expression recognition and head pose estimation. Our next plan is to extend this 
work to facial expression recognition. 

 
We anticipate that the iconized images obtained using the proposed pipeline will be useful to reduce data size 
requirements and privacy concerns. 
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