
CHALLENGES IN TEACHING GLOBAL SOFTWARE ENGINEERING
TO UNDERGRADUATE STUDENTS: COURSE DESIGN

Vinitha Hannah Subburaj

West Texas A&M University, School of Engineering, Computer Science, Mathematics,
Texas-USA

vsubburaj@wtamu.edu

Emily M. Hunt
West Texas A&M University, School of Engineering, Computer Science, Mathematics, Texas-

USA
ehunt@wtamu.edu

Angela Spaulding

West Texas A&M University, Killgore Research Center, Texas-
USA

aspaulding@wtamu.edu

James D. Webb
West Texas A&M University, IoT Innovation Laboratory, Texas-

USA
jwebb@wtamu.edu

Abstract: Unlike many courses in the field of computer science, teaching software
engineering comes with a set of challenges. These major challenges can be categorized into
five aspects, namely: (1) incorporating a case study based approach to the design of lectures
and assignments, (2) including projects from a range of domains, technology, and platforms,
(3) keeping up with rapid evolution of technology, (4) setting up a development
environment enabling students to understand the impact of geographical, social, and cultural
implications on software development, and (5) having students understand the fact that
software development is not simply a technical activity, but involves facilitating effective
operation of teams. Since software systems have now become an integral part of almost
every single industry, producing students who can develop and maintain systems that span
across various industries is critical. This paper describes each of these challenges and
possible approaches towards overcoming these challenges. The focus of this paper will
address the challenges of creating a course within an undergraduate computer science
curriculum to teach global software engineering. Due to the globalization of software
development activities, industries are looking at recruiting students who are equipped with
skills needed to deal with challenges around global software engineering. Designing
instructional materials and assessment tools to develop this unique mix of skill sets is
addressed in this paper. We also discuss both the traditional and non-traditional aspects of
teaching software engineering to computer science students.

Keywords: Global software engineering, Course design, Challenges

Introduction
Software engineering has become an important course in the CS curriculum. Students entering into software
engineering companies are expected to have a wide range of skills sets ranging from communication to purely
technical skills. Most importantly, today’s computing industries operate across the globe where either their
customers are from a different country or their development team operates from another country. Industries hiring
CS students have a general observation that our students struggle with projects that require them to be operating
in a global environment. Organizations have started to research and invest on bringing Global Software
Engineering (GSE) into classrooms and teach students the needed skill set enabling them to succeed in a global
project development environment. This paper is also one such effort of teaching GSE to undergraduate CS students
and add it as a required course into the CS curriculum.

The Online Journal of Science and Technology - January 2019 Volume 9, Issue 1

www.tojsat.net Copyright © The Online Journal of Science and Technology 68

mailto:vsubburaj@wtamu.edu
mailto:ehunt@wtamu.edu
mailto:aspaulding@wtamu.edu
mailto:jwebb@wtamu.edu

Global Software Engineering involves software engineering practices carried over a global setting. Today’s
software development activities get distributed across the globe mainly to lower the development cost. By
outsourcing development tasks to low-wage countries, the overall software development cost can be brought down.
This introduces a scenario of global software development team who have to operate together to build a reliable
software product. To remain competitive in the market, software companies have to deliver a product that gets
used by global customers. This furthermore adds on challenges of building a software product that should satisfy
requirements from multi-cultural settings, varying political, ethical, and societal backgrounds. Global software
development teams have to ensure proper communication and planning to overcome language and time zone
barriers. Non – functional aspects of the software like look and feel, ease of use, and aesthetics vary across the
globe. If a software is built for global customers, then care should be taken to ensure that these non-functional
aspects get addressed during the software design.

Teaching software engineering to Undergraduate students has become challenging due to the complex nature of
evolving software systems. Simulating real world software development inside a classroom setting is not easy due
to several resource constraints. Educators have been working on pedagogies that can effectively simulate the real-
world software development experience for students. Teaching global software engineering is even more
challenging compared to teaching software engineering. Simulating a global software engineering environment to
teach the principles and practices of global software engineering is very challenging. In this paper, a sample
syllabus is presented for educators to use in their curriculum. The global software engineering course design
proposed in this paper has been done after careful analysis and through the experience of many years of offering
software engineering coursework.

The rest of this paper is organized with a related work section, a teaching software engineering section, a global
software engineering – course design section, and a summary section.

 Related Work

Urban [11] addressed software engineering on the web through a graduate level course on software requirements
and specifications. The course project involved the development of a web-based software tool that implemented
the ANSI/IEEE standard on software requirements specifications. The graduate course was offered during the Fall
1998 semester. The concepts developed in the graduate course were followed through into an undergraduate senior-
level software engineering project two course sequence during 1999. There were several other IEEE software
engineering standards developed into web-based software engineering tools during subsequent years.
Deiters, Constanze, et al. [4] stated that depending on the stakeholder located in a particular region, the distribution
of the software development projects varies. There must always be a good combination of theory and practice for
a software engineering program in a university. The paper brings forth the concepts behind the common teaching
atmosphere for global software engineering called the GlobSELab. Based on the feedbacks obtained from the
participants, the GlobSELab was added to the course. The lab describes the teaching intentions, project
management, and quality assurance. Motivated by the experiences of the distributed practical course, foreign
universities were invited to create a platform that correlate more of an industrial reality. The course will be of great
benefit to provide solutions to typical problems of global software engineering.

Paasivaara, Maria, et al. [10] developed a course where they incorporated the concepts of distributed Scrum in a
global software engineering (GSE) environment. The course adapts a combination of both agile methodologies
and industry best practices. The previously used GSE courses used plan-driven methods. Whereas the distributed
Scrum method is unique in assessing the student expectations and learning. A mixed-method approach has been
employed to assess the learning, distributed collaboration, building trust, and inter-cultural collaboration. The
results obtained from the analysis of data before, during, and after the course yielded the discussion about the

The Online Journal of Science and Technology - January 2019 Volume 9, Issue 1

www.tojsat.net Copyright © The Online Journal of Science and Technology 69

challenges in applying the skills, strategies to overcome the challenges, and the strategy effectiveness. Hence,
distributed Scrum in combination with GSE would be considered as an important course design.

Lescher, Christian, et al. [6] in their paper have stated that GSE has brought forth several new challenges in the
market. Some of them are geographic separation, various time zones, cultural and language barriers which causes
a delay in the communication and often leads to quality and cost issues. In the paper, GSE was taught in two
different classrooms in order to compare them with the traditional classroom setting. This approach resulted in the
reflection on GSE key effects on communication issues, and distribution delay. This effort is intended to expand the
work on interactive GSE exercises and to extend the set of exercises by evaluating additional exercises for teaching
GSE.

Nordio, Martin, et al. [9] discussed several challenges that a software engineering student will face in distributed
software development. A software engineering course was taught using globally distributed projects with an aim
to prepare the student to meet such challenges. The paper presents the experience regarding an approach used to
teach distributed software engineering. Even though the approach is an old method, improvements have been made
based on the lessons learned by the authors. The API design has an important role in this approach. In addition,
this approach has an emphasis on the development of communication skills as almost 30% of the time is spent by
the student in a project by corresponding to communication.

Beecham, Sarah, et al. [1] adopted a Global Teaming Model framework to describe the requirements of global
software development. From the assessment of three small or medium sized enterprises (SME), GTM practices
that are relevant to SMEs have been identified. Assessment was also done on the gap between practices addressed
by GSE-Ed literature and the needs of SMEs engaged in GSD. Seven GTM practices were relevant and two were
lacking. The analysis brings forth the complexity involved in the roles and responsibilities of the instructors in
GSE-Ed courses. Hence, students face the reality that practitioners of SMEs need to actively participate in the
education process. Beecham, Sarah, et al. [2] have also conducted a study in offering different options to CS
educators teaching CS courses in a global setting. They specifically focussed on learning GSE theory and learning
GSE by doing. Studies that take a hybrid approach of combining theory and practice were also included in this
paper.

Matthes, Florian, et al. [8] stated that international aspects must be included in the education of software engineers
along with technology and management. The paper described an applied approach that involved 43 participants at
5 different distributed academic institutions. The paper presented the lessons learned from recommendations by
teaching staff and students. The approach introduced is expected to serve as a base foundation for similar GSE
ventures.

Li, Yang, et al. [7] stated that software engineering is now facing challenges due to globalization. Many industries
ensure global competitiveness by transferring a part of their development activities to distributed countries.
Instructors face the problem of incorporating skills related to recent developments in global software engineering.
The paper describes the exercises required for teaching GSE in a single class room and report the experiences. The
students gain experience to work with various time zones and time management. Hence, such exercises could be
included in the course curricula.

Kuhrmann, Marco, and Jürgen Münch [5] stated the importance to understand the need for interdisciplinary
teamwork for a successful project execution. A course unit discussed in this paper, was used to create an awareness
among students regarding the role of communication in distributed software development. The course unit
presents: 1) an environment in which students can learn distributed agile software and 2) a controlled experiment
instrument for organizing a small software project to be carried out in virtual teams. Some of the challenges faced
by the students are to overcome the limitations, set up teams, and develop the application. The results due to poorly
organized communication indicated that there were issues regarding technical, architecture and developmental
resources. Hence, the lack of communication protocols can impact the team's coordination and performance.

Damian, Daniela, et al. [3] presented a framework for teaching GSD skills in collaboration with three universities.
The findings from their research show that the students learned to recognize the importance of effective
communication between clients and developers and how the GSD environment influenced the communication.

The Online Journal of Science and Technology - January 2019 Volume 9, Issue 1

www.tojsat.net Copyright © The Online Journal of Science and Technology 70

Teaching software engineering

The following are the issues and some solutions on addressing those issues while teaching software engineering.
(1) incorporating a case study based approach to the design of lectures and assignments,

Adopting a single case study throughout the course work has proven not to be successful while covering different
concepts of software engineering. While the other extreme of using too many case studies inside the coursework
have also often confused the students. The approach that has proven to be useful is usually to take two different
case study examples for preparing the lecture materials and use two or more complete different ones for coming
up with assignments and in-class activities. Through this approach, the students get to understand the concepts by
applying them to just enough case study examples. Usually referring to more than one textbook for case studies
and also looking out for more real-world examples to help them understand the real-life scenarios has proved to
be very successful.

(2) including projects from a range of domains, technology, and platforms,

Selecting appropriate projects from a range of domains, technology, and platforms is a key factor in teaching
software engineering. By including projects from different domains, we can prepare students with skills sets
needed to be successful in the real-world. A real challenge is developing these projects and preparing the students
with the background information needed. For instance, if we include software projects from the healthcare domain,
how do we prepare students with the background information on healthcare industries in general to help them build
projects in this domain? How much time do we spend investigating the domain before we let the students perform
the actual development? One of the solution to this problem is to have a system analysis and design course as a
pre-requisite to this course where we can focus on teaching students analysis and design techniques. Requirements
analysis techniques, such as root-cause analysis, informal benchmarking, observation, and outcome analysis, can
be used to investigate the problems that come from different domains.

(3) keeping up with rapid evolution of technology,

The projects of choice and the technology used during software development should reflect current technology.
By keeping up with the technology, we not only teach students on how to build with latest technology, but also
use the latest CASE tools and techniques to aid project development. This situation is crucial and challenging due
to rapid growth of software technology. By letting the students do technical feasibility analysis during the initial
stages of project development, incorporating the use of CASE tools during software development, and the choice
of hardware and software based on the industry needs will help handle this situation.

(4) setting up a development environment for enabling students to understand the impact of

geographical, social, and cultural implications on software development, and
This challenging aspect addresses problems beyond just solving the problem and implementing a solution. Students
usually try to overlook this phase and underestimate the importance. The non-functional aspects of software
development needs to be included during the early phases of software development. Conducting a pre and post
mortem analysis with respect to these aspects during software project development will help students understand
and experiment the impact of geographical, social, and cultural implications during software development.

(5) having students understand the fact that software development is not simply a technical activity,

but involves facilitating effective operation of teams.
Teamwork is an essential skill required for software engineering jobs. Efficient team management skills and their
effective operation is key to successful completion of the project. Students come in with varying interoperable skill
sets and are required to learn the importance of being responsible team players. Some of the proven methods of
helping students to work efficiently in teams include: effective team formation, practice of recording team meeting
minutes, maintaining an anonymous online team resolution center where students can report team problems and
get solutions, having 2-3 teamwork assessments done during the course of project development, and having a
percentage of the grade assigned for effectively working in teams.

The Online Journal of Science and Technology - January 2019 Volume 9, Issue 1

www.tojsat.net Copyright © The Online Journal of Science and Technology 71

GSE – Course Design

The prerequisite of this course should be a Requirements Engineering or System Analysis and Design course.
Students should be able to clearly state the non-functional aspects of the project, such as the geographical, social,
and cultural implications as requirements. Course design of a GSE course is provided in Appendix A. The course
description, objectives, and the major components of the course are highlighted in the syllabus. 50% of the total
weight has been assigned to global project development and the components with descriptions are detailed in Table
1.

This course provides the students with an opportunity that in the GSE course is unique when considering that many
other course for group projects puts together students who immediately begin development of the software from a
problem statement. The team formation activities that occur early in the GSE course will set the stage for enhanced
communication, member strength analysis, and project management aspects.

The concepts in the GSE course adds a level of complexity to a software engineering course project that is not
experienced in most other software engineering projects. The success of the students will transfer into software
engineers who are industry ready.

Summary

Current literature clearly supports the need for global software engineering courses at the undergraduate level. This
paper has provided the motivation and survey of earlier efforts for the development of global software engineering
courses in a CS curriculum which includes issues and relevant solutions in teaching software engineering. The
authors present GSE – Course Design which elaborated on one instance of a GSE course at the course information
level including the syllabus that will be used during implementation fall 2018. The next step will be to gather data
on the further design and implementation of the stated GSE course. Through continuous process improvement, the
constituents will help drive course enhancements.

Appendix A
CS – XXXX - Global Software Engineering

Prerequisites
Requirements Engineering or System Analysis and Design
Course Descriptions
This course teaches the essential skills necessary to develop software systems in a global environment. This course
will cover fundamental topics of a global software engineering life cycle process from requirements specifications
to testing of a completed software system in a global setting. The course has an emphasis on essential
communication skills required by the students to effectively conduct the software development process in a global
setting. This course is project based involving practical implications along with team work. Projects for this course
will be approved by the instructor in advance and will be originating from different countries. A major part of the
course will involve students to work with global stakeholders to design and develop software systems. Students
will be supervised and are expected to be well organized while working with team members and developing their
presentation and management skills.

Objectives
After completion of the course, students will be able to

• Select appropriate software life cycle process models to be used for global software development
• Describe and apply fundamentals of software engineering methodologies and techniques to build projects

on a global setting
• Recognize the importance and challenging aspects of gathering software requirements especially when the

customers are geographically distant
• Translate software requirements to design, design to code, and then test the software system based on

appropriate global software engineering methodologies
• Choose appropriate CASE tools, models, design patterns, architecture, and programming language for

global software engineering
• Employ team work – that includes project management skills, interpersonal, and communication skills in a

global setting
• Describe different software testing methodologies that have been effective with global software engineering

The Online Journal of Science and Technology - January 2019 Volume 9, Issue 1

www.tojsat.net Copyright © The Online Journal of Science and Technology 72

Grading Policy

Class attendance and participation 5%
Homework/Lab assignments 15%
Project 50%
Exam (2 midterms 10% each, 1 final 10%) : 30%
Total: 100%

Table 1: Project Grade Distribution
Here is the breakdown of how the project grade is being calculated.

S.No Tasks Description Weights
1. Project plan and feasibility

analysis
During the first two weeks, students are
required to establish communication with their
global customer as directed by the instructor.
They are required to come up with a project
plan and also conduct feasibility study.

5%

2. Decide on a software life
cycle model and establish
modes of contact with the
global customer

Choice of a suitable software development life
cycle (SDLC) model along with effective
modes of communication between the team
and customer is very important.

5%

3. Requirements analysis Based on the choice of SDLC, this phase
would differ. A good understanding of the
requirements is essential for all project
development.

10%

4. Design Design and implementation will be done by
the project teams with constant feedback from
their global customer.

15%

5. Implementation 20%
6. Testing Testing will be done by another team different

from the ones who developed this project. Test
data and the methodology should be clearly
specified by the project developers. The other
team should consider themselves working in a
different country and follow the practices
followed in that specific country to conduct the
testing.

10%

7. Appropriate use of
software tools
Post-mortem analysis of
what went well and what
can be improved

The appropriate use of technology will be
weighed as a factor contributing to the
performance of the project members. Factors
that led to success and failure of the project
will be documented by the student.

10%

8. Documentation
Meeting minutes

Documentation of the entire project
development along with the minutes recorded
during every meeting should be reported.

10%

9. Customer evaluation and
feedback

Rubrics will be provided to the customers for
evaluating the teams working on their
requirements.

5%

10. Final Presentation 10%
 Total: 100%

The Online Journal of Science and Technology - January 2019 Volume 9, Issue 1

www.tojsat.net Copyright © The Online Journal of Science and Technology 73

References
Beecham, Sarah, et al. "Challenges and recommendations for the design and conduct of global software engineering

courses: A systematic review protocol." Tech. Rport Lero_TR_2015_01 (2015).
Beecham, Sarah, Tony Clear, and John Noll. "Do we teach the right thing?: A comparison of global software

engineering education and practice." Proceedings of the 12th International Conference on Global
Software Engineering. IEEE Press, 2017.

Damian, Daniela, Allyson Hadwin, and Ban Al-Ani. "Instructional design and assessment strategies for teaching
global software development: A framework." Proceedings of the 28th International Conference on Software
engineering. ACM, 2006.

Deiters, Constanze, et al. "Glose-lab: Teaching global software engineering." Global Software Engineering (ICGSE),
2011 6th IEEE International Conference on. IEEE, 2011.

Kuhrmann, Marco, and Jürgen Münch. "Distributed software development with one hand tied behind the back: A
course unit to experience the role of communication in GSD." Global Software Engineering Workshops
(ICGSEW), 2016 IEEE 11th International Conference on. IEEE, 2016.

Lescher, Christian, Yang Li, and Bernd Bruegge. "Teaching global software engineering: Interactive exercises for
the classroom." Global Software Engineering (ICGSE), 2014 IEEE 9th International Conference on. IEEE,
2014.

Li, Yang, et al. "Teaching global software engineering by simulating a global project in the classroom."
Proceedings of the 47th ACM Technical Symposium on Computing Science Education. ACM, 2016.

Matthes, Florian, et al. "Teaching global software engineering and international project management." Proceedings
of the 3rd International Conference on Computer Supported Education. Noordwijkerhout, Netherlands. 2011.

Nordio, Martin, et al. "Teaching software engineering using globally distributed projects: The DOSE course."
Proceedings of the 2011 Community Building Workshop on Collaborative Teaching of Globally
Distributed Software Development. ACM, 2011.

Paasivaara, Maria, et al. "Teaching students global software engineering skills using distributed scrum."
Software Engineering (ICSE), 2013 35th International Conference on. IEEE, 2013.

Urban, Joseph. “Software engineering on the web.” Proceedings of the 3rdInternational Conference on Business
Information Systems, Springer, 1999.

The Online Journal of Science and Technology - January 2019 Volume 9, Issue 1

www.tojsat.net Copyright © The Online Journal of Science and Technology 74

	CHALLENGES IN TEACHING GLOBAL SOFTWARE ENGINEERING TO UNDERGRADUATE STUDENTS COURSE DESIGN

